
The Big Faceless Graph Library

Welcome to the Big Faceless Graph Library example document.

The following pages show a number of graphs created with the
Big Faceless Graph Library (available from http://big.faceless.
org/products/graph), which should give you an idea of what the
library is capable of. Among the highlights are:

 · Full 3D engine with shading for more realistic graphs.

 · Render to java.awt.Image, PNG, PDF and other formats

 · Extensible formatting for easy graphing of currencies, dates
 and more.

 · Curve smoothing functions for cleaner graphs

The examples that follow all show the graph, a brief description
of what's being shown, and a list of all the options that were set
to generate the graph.

More documentation is available at the product homepage.

This document was created with the Big Faceless PDF library,
available separately from http://big.faceless.org/products/pdf

DEMO

 apples oranges pears

 bananas cherries lemons
 blueberries mandarins peaches
 apricots grapefruit

A Plain Fruit Pie

This is the default layout for a Pie Graph. The key is in the
default position, below the graph. The order of the key and the
slices reflects the order in which they were added to the graph -
first apples, then oranges, pears, bananas, cherries lemons and
so on. The slices are drawn clockwise, and by default the first
slice starts at the 12 o'clock position. This can be changed using
the "YRotation" option, which you'll see in the next example.

All the following Pie Graphs are drawn with exactly the same
data, so the changes you see are the result of different options
being set. Lets see some more interesting graphs.

new PieGraph()DEMO

grapefruit (4.7%)apricots (22.8%
)

peaches (0.8%)
mandarins (0.8%)

blueberries (0.8%)
lemons (0.8%)

cherries (0.8%)

apples (23.6%)

bananas (23.6%)

oranges (9.4%
)

pe
ar

s
(1

1.
8%

)

A 3D look, for a more substantial Pie.

This is a Pie graph that has been rotated to give a 3D look. The
YRotation option causes the first slice to begin at a different
angle from 12 o'clock. The XRotation option means that the
graph is tipped backwards, so we can see the bottom edge of
the pie.

We've also moved the key so that it's displayed on the slice (only
if the slice is greater than 5% of the whole) and it's rotated. If the
slice is less than 5% of the whole, it's displayed next to the graph
and the end of a line. We're also showing the percentage for
each slice.

Notice how the graph doesn't fill the entire box, but sits in the
middle. This is the result of the FixedAspectRatio flag, which for
Pie Graphs defaults to true. We'll show you what happens if you
play with that in a later example.

new PieGraph()
optionYRotation(45.0)
optionXRotation(50.0)
optionDisplayKey(KEY_ROTATED_INNER_FLAT_OUTER)
optionDisplayPercentage(PERCENTAGE_WITH_KEY)
optionOuterKeyPercentage(5.0)

DEMO

ap
ric

ot
s

grapefruit

m
andarins

peaches

lem
ons

blueberries

cherries

apples

bananas

oranges

pe
ar

s

3D Pie Graph with Outer Keys

This Graph is similar to the previous graph, but with a couple of
other options set.

First, we've highlighted the Citrus Fruit, by extending the relevent
slices by 20%.

Secondly, we've added some ZRotation, which is why we can
now see the left side of the graph as well as the bottom.

We've changed the Height of the graph from the default of 20,
which is why all the slices are thicker.

Finally, we've changed the Key Style to ROTATED_OUTER. The
results of this last one are obvious.

The data that we're using has a number of small slices, in the
top left corner on this graph. In the next example we'll use the
"Other Slice" feature to remove them automatically.

new PieGraph()
extendslice("grapefruit", 20)
extendslice("lemons", 20)
extendslice("oranges", 20)
extendslice("mandarins", 20)
optionYRotation(45.0)
optionXRotation(50.0)
optionZRotation(30.0)
optionHeight(35.0)
optionDisplayKey(KEY_ROTATED_OUTER)

DEMO

grapefruit

apricots

Other

apples

bananas

oranges

pears

Pie Graph with an 'Other' Twist

This example shows the FLAT_OUTER style of key. It's the
same data as the previous graph, but has less slices. Why?

We're using the 'OtherPercentage' option to combine the smaller
slices (in this case, anything less than 3%) into a single slice, for
clarity.

It's a good idea to set this to a low value by default, especially if
you're generating the graphs automatically from a datasource -
although we try and keep the graph looking nice, it's almost
impossible with hundreds of tiny slices stacked next to
eachother.

new PieGraph()
extendslice("grapefruit", 20)
extendslice("lemons", 20)
extendslice("oranges", 20)
extendslice("mandarins", 20)
optionYRotation(45.0)
optionXRotation(50.0)
optionZRotation(30.0)
optionOtherPercentage(3.0)
optionDisplayKey(KEY_FLAT_OUTER)

DEMO

grapefruit

Other

apricots

apples

bananas

oranges

pears

A Stretched, Bright Pie

This is the same graph as the last example, with three changes.

First, we've changed the colours (all the graphs up until now
have used the default colors). Two of the slices we've patterned
by using the "ColorPattern" class from our companion PDF
library product - this feature is ONLY available when rendering to
PDF.

Second, we've changed the key style again, this time to
FLAT_INNER_FLAT_OUTER. The keys will be displayed next to
the slice only if they are smaller than the OuterKeyPercentage.

Finally, we've turned off the FixedAspectRatio option, so the
graph fills the entire box - the penalty for this is it's no longer
exactly circular. With extreme rotations and narrow output
windows, this can result in a graph that is difficult to read.

new PieGraph()
extendslice("grapefruit", 20)
extendslice("lemons", 20)
extendslice("oranges", 20)
extendslice("mandarins", 20)
optionYRotation(45.0)
optionXRotation(50.0)
optionZRotation(30.0)
optionOtherPercentage(3.0)
optionOuterKeyPercentage(5.0)
optionDisplayKey(KEY_FLAT_INNER_FLAT_OUTER)
optionFixedAspectRatio(false)

DEMO

 apples
 oranges
 pears
 bananas
 apricots
 grapefruit
 Other

4.7%

22.8%

3.9%

23.6%

23.6%

9.4%

11.8%

Separating the Percentage from the Key

The change in aspect ratio is more pronounced here, now that
we'ved moved the key away from the Pie.

We're displaying percentages again, but by specifying
PERCENTAGE_INLINE, the percentages are placed on the
graph. We've forced them to be displayed on the slice by setting
OuterKeyPercentage to 0. If we'd set it to 100, all the
percentages would be displayed next to the slices instead.

new PieGraph()
extendslice("grapefruit", 20)
extendslice("lemons", 20)
extendslice("oranges", 20)
extendslice("mandarins", 20)
optionYRotation(45.0)
optionXRotation(50.0)
optionZRotation(30.0)
optionOtherPercentage(3.0)
optionOuterKeyPercentage(0.0)
optionDisplayKey(KEY_BOXED_LEFT)
optionDisplayPercentage(PERCENTAGE_INLINE)
optionFixedAspectRatio(false)

DEMO

Fruit Consumption
Comparing Apples and Oranges

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

F
ru

it
 E

at
en

Month of Year

A Simple Bar Graph

This is the default layout for the simplest type of Bar Graph,
which just plots single bars along the X axis.

We've played with the scale a bit here - notice that the values
are tiny fractions rather than whole numbers. The library can
handle any scale intelligently.

The basic bar graph looks pretty bland, so lets set some options.

new BarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Comparing Apples and Oranges")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")DEMO

Fruit Consumption
Showing beakdown over time

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007

M
o

n
th

 o
f Y

ea
r

Fruit Eaten

Horizontal Bars

This is the same graph as before, but spun around 90 degrees.
We've set the BarWidth option to 0.8, so the bars don't take up
the entire column (or row in this case). We've also added a back
wall.

Horizontal graphs also work well with TowerBarGraphs

new BarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Showing beakdown over time")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")
optionZRotation(90.0)
optionZWallStyle(new Style(null, #808080))
optionBarWidth(0.8)DEMO

Fruit Consumption
Showing beakdown over time

F
ru

it
 E

at
en

Month of Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

0

1000

2000

3000

4000

5000

6000

7000

8000

Dec

2000
2001

A Deeper Bar Graph

Here's another Bar Graph with a new dimension - depth.

Notice the difference between December 2001, where the value
is zero, and December 2000, where there is no value at all.

Observant viewers will also notice the labels on the X-Axis have
been rotated by 30 degrees - particularly useful if you've got
long labels.

new DepthBarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Showing beakdown over time")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")
optionYRotation(30.0)
optionXRotation(20.0)
optionXAxisTextRotation(30.0)

DEMO

Fruit Consumption
Showing beakdown over time

F
ru

it
 E

at
en

Month of Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

2000

4000

6000

8000

10000

12000

14000

16000

A Taller Bar Graph

Here's the third type of Bar Graph, a tower graph.

The data and all the settings are identical to the last graph,
although we've once again changed the color to a ColorPattern
(a feature only available with our companion PDF library
product)

new TowerBarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Showing beakdown over time")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")
optionYRotation(30.0)
optionXRotation(20.0)
optionXAxisTextRotation(30.0)DEMO

Fruit Consumption
Showing beakdown over time

Jan

F
ru

it
 E

at
en

8000

6000

4000

2000

0

Feb

10000

Mar Apr

14000

12000

Month of Year

May Jun

16000

Jul Aug Sep Oct Nov Dec

A Rounder, Taller Bar Graph

This graph is identical to the previos one, except we've set the
RoundBars option - the effects of which are obvious. Any bar
graph except for a MultiBarGraph can be drawn with round bars
- although it's not nearly as fast as using rectangles

new TowerBarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Showing beakdown over time")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")
optionYRotation(30.0)
optionXRotation(20.0)
optionRoundBars(true)
optionXAxisTextRotation(30.0)DEMO

Fruit Consumption
Showing beakdown over time

Month of Year

F
ru

it
 E

at
en

MayAprMarFebJan

-2000

-4000

-6000

OctSepAugJulJun

DecNov

0

2000
2001

8000

6000

4000

2000

Sub-Zero Bar Graphs

Bar graphs can swing both sides of the zero axis. Most of the
settings are identical to the last two graphs, but we've tweaked
one or two options. First the bars have been resized to be
narrower and shallower - bar width and depth can be set
independently. Also notice the floor of the graph, which we've
moved from the default position at the bottom of the Y axis to
where y=0, by setting the YAxisAtZero option to true.

In this example the floor is transparent - optional, but useful in
this situation so we can see the descending bars.

new DepthBarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Showing beakdown over time")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")
optionZWallStyle(new Style(null, #808080))
optionFloorStyle(new Style(null, #000000))
optionYRotation(30.0)
optionXRotation(20.0)
optionBarWidth(0.8)
optionBarDepth(0.4)
optionYAxisAtZero(true)

DEMO

Fruit Consumption
Showing beakdown over time

8000

6000

4000

2000

F
ru

it
 E

at
en

0
DecNovOctSepAugJul

Month of Year

JunMayAprMarFebJan

-2000

-4000

-6000

Multiple Sub-Zero Bars

If you have to work in two dimensions, a MultiBarGraph is a
good alternative to a DepthBarGraph - plotting the same data on
a single X axis instead of the X and Z axis. Here's the same
graph as the previous example, minus the rotation.

new MultiBarGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Showing beakdown over time")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Fruit Eaten")
optionZWallStyle(new Style(null, #808080))
optionFloorStyle(new Style(null, #000000))
optionBarWidth(0.8)
optionBarDepth(0.4)
optionYAxisAtZero(true)DEMO

Apple Prices
Showing Min/Mean/Max price

January

February

M
arch

April
M

ay
June

July
August

Septem
ber

$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

$6.00

$7.00

$8.00

$9.00

P
ri

ce
 o

f
K

ilo
 o

f
A

p
p

le
s

Month of Year

Floating Bars

A requirement of the other Bar Graphs is that all the bars grow
from zero. Here's another type of Bar Graph that doesn't have
that limitation - a floating bar graph. These are useful for
showing a range of values, often with the center showing the
average.

This is an interesting example for another reason, because it
shows the use of a "Formatter", which is used to format the Y
axis values as a currency.

new FloatingBarGraph()
optionTitle("Apple Prices")
optionSubTitle("Showing Min/Mean/Max price")
optionXAxisLabel("Month of Year")
optionYAxisLabel("Price of Kilo of Apples")
optionZWallStyle(new Style(null, #808080))
optionBarWidth(0.5)
optionXAxisTextRotation(45.0)
optionYFormatter(new CurrencyFormatter())

DEMO

Fruit Consumption
Comparing Apples and Oranges

 Apples Oranges

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
0

5

10

15

20

25

30

35

A Plain Area Graph

This is the default layout for an Area Graph. Area Graphs are a
variation on a line graph, and are usually used to show
cumulative data

The data shown to the left is missing readings for a couple of
years - 1993,1994 and 2000 (apples only). The graph will
interpolate the data for these results - to set a value to zero, do it
specifically (like we've done for apples in 1996 and oranges in
1997).

new AreaGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Comparing Apples and Oranges")DEMO

Fruit Consumption
Comparing Apples and Oranges

 Apples Oranges

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

0

5

10

15

20

25

30

35

An Area Graph with depth

We've applied X and Y rotation to this graph to give it some
depth - the X rotation means we can see the right of the graph,
the Y rotation means we can see the top.

We've also added walls at the back (the Z-Wall) and on the Y
axis (the Y-Wall), in light blue with a black border.

Notice the colors are darker than the previous graph. This is
because of the lighting - by default, the light comes from the
right of the graph. A single light source can come from any
direction, and although the lighting model is extremely simple it's
a nice way to create more realisitic looking graphs.

new AreaGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Comparing Apples and Oranges")
optionZWallStyle(new Style(#F0F0FF, #000000))
optionYWallStyle(new Style(#F0F0FF, #000000))
optionYRotation(25.0)
optionXRotation(10.0)

DEMO

Fruit Consumption
Comparing Apples and Oranges

 Apples
 Oranges

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

0

5

10

15

20

25

30

35

Moving to a different Key

Here's an example where the key is placed to the right of the
graph. The key can go above, below, to the left or to the right of
any Graph, and for Pie Graphs there are a several more options
to choose from. We've also changed the font and color of the
Key.

Area Graphs don't have many options specific to them, but one
of them is whether to draw "Segments". Here we've turned
segments off, so there are no black lines across the surface of
the area graph. Compare with the previous example to see the
difference.

new AreaGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Comparing Apples and Oranges")
optionZWallStyle(new Style(#F0F0FF, #000000))
optionYWallStyle(new Style(#F0F0FF, #000000))
optionYRotation(25.0)
optionSegments(false)
optionXRotation(10.0)
optionKeyBoxStyle(new Style(#F0F0FF))
optionKeyStyle(new Style(red, serifItalic10pt))
optionDisplayKey(KEY_BOXED_RIGHT)

DEMO

Fruit Consumption

 Apples

1615141312111098765432

15

14

13

12

11

10

9

8

7

6

5

4

3

The Basic Line Graph

This is the basic Line Graph. We've plotted a single curve, which
is described by a set of Data Points. Most Line Graphs will have
one or more "Data Curves" plotted.

new LineGraph()
optionTitle("Fruit Consumption")

DEMO

Fruit Consumption

 Apples Catmull-Rom Spline
 B-Spline

161514131211109

16

14

12

10

8

6

8765432

2

0

4

Smoother Curves

This is the same graph as before, but we're plotting three curves
on the graph - the original version, and two "smoothed" versions.

Mapping a collection of points to a function is a complicated
business, so we've included three different options for smoothing
curves - a Polynomial (not shown here), a Catmull-Rom Spline
and a B-Spline. Each has it's benefits, but the splines are
probably the most useful (an explanation why is given in the
class documentation). If you want to use a different smoothing
function, it's easy to write your own subclass of Curve.

We've also set the YStretchToZero flag. Although the data is the
same as the previous graph, the Y axis now runs to zero even
though the lowest value plotted is 3.

You'll also notice there are markers on the 'Apples' curve.
Markers can be Octagonal (like these), Square or Diamonds

new LineGraph()
apples.setMarker(MARKER_CIRCLE)
optionTitle("Fruit Consumption")
optionZWallStyle(new Style(null, #F0F0F0))
optionYStretchToZero(true)

DEMO

Fruit Consumption

 Apples B-Spline

16

168 9 10 11 12 13 14 15

6

8

10

12

14

2 3 4 5 6 7
0

2

4

No Curves at all

This is the same graph as before, but we're only plotting two
curves - the raw data and the B-Spline.

"Two curves?" I hear you say, "I only see one!". We've turned off
the lines for the raw data by using the MARKERS_ONLY type of
marker. This way we just plot the markers at each point on the
curve, and effectively render the line invisible.

We've also upped the FunctionSmoothness from the default of
20 to 50. This is the number of line segments used to plot any
Function Curves - higher values give smoother curves but
slower graphs.

The red box around the graph is the result of the BoxColor
option, and the thicker line is naturally the LineThickness option.
This last only has an effect if the graph isn't rotated - on high-
resolution devices, the standard line thickess sometimes isn't
enough.

new LineGraph()
apples.setMarker(MARKER_DIAMOND|MARKERS_ONLY)
optionTitle("Fruit Consumption")
optionZWallStyle(new Style(null, #F0F0F0))
optionYStretchToZero(true)
optionFunctionSmoothness(50.0)
optionBoxColor(Color.red)
optionLineThickness(2.0)

DEMO

Fruit Consumption

 Apples Catmull-Rom Spline
 B-Spline

10

8

6

4

2

2

0

876543

12

14131211109

1615

16

14

Smoother, Deeper Curves

This graph is identical to the one before, but in 3D. This example
is too complicated to be useful, but it still looks nice. We've made
the lines a bit thinner to try and ease the congestion on this
page

new LineGraph()
apples.setMarker(MARKER_SQUARE)
optionTitle("Fruit Consumption")
optionZWallStyle(new Style(null, #F0F0F0))
optionYStretchToZero(true)
optionYRotation(30.0)
optionXRotation(20.0)
optionCurveDepth(0.5)DEMO

Sine and Cosine
Ranging from -Pi to Pi

 Sine Cosine

-3.14159265
-2.5 -2

-0.8

-1

0.8

0.6

0.4

0.2

-0.5-1-1.5 0

1.510.50

-0.2

-0.4

-0.6

1

3.14159265
2.52

Simpler Curves

If you don't want to go to the effort of subclassing Curve, it's
easy to plot simple functions on the graph using the
"SimpleCurve" class. Here we're plotting A Sine and Cosine
curve. Any function that takes a double and returns a double can
be plotted like this, even functions returning infinite or NaN
values, like Tangents.

Because we're plotting only Function Curves, we need to specify
the start and end points of the graph using the MinX and MaxX
options.

Incidentally, the code for a similar example to this is in the
"examples" directory, but it changes the X-axis formatter to plot
values of Pi on the axis (rather than the standard decimal values
you see here).

new LineGraph()
optionTitle("Sine and Cosine")
optionSubTitle("Ranging from -Pi to Pi")
optionZWallStyle(new Style(null, #F0F0F0))
optionYRotation(30.0)
optionXRotation(20.0)
optionMinX(-3.141592653589793)
optionMaxX(3.141592653589793)

DEMO

Tangent
Limited to +/- 10

 Tan

-4

-6

-8

-10

3.14159265

0.5
0

-2

10

8

6

4

2

0

1

2.5
2

1.5

Difficult Curves

Some functions return unplottable values for certain positions -
the classic example is the Tangent, which returns infinite values
for Pi/2. The library neatly handles these values by leaving a gap
in the line. To graph a useful range for these functions, you can
use the MinY and MaxY options to restrict which parts of the
graph to plot

new LineGraph()
optionTitle("Tangent")
optionSubTitle("Limited to +/- 10")
optionZWallStyle(new Style(null, #F0F0F0))
optionYRotation(30.0)
optionXRotation(20.0)
optionMinX(0.0)
optionMaxX(3.141592653589793)
optionMinY(-10.0)
optionMaxY(10.0)

DEMO

Fruit Consumption
Net Increase in Consumption

 Apples Oranges

03 Aug 05

01 Jul 05

01 Jun 05

01 M
ay 05

01 Apr 05

01 M
ar 05

01 Feb 05

01 Jan 05

01 Dec 04

16 Nov 04

0.0%

10.0%

5.0%

40.0%

35.0%

30.0%

25.0%

20.0%

15.0%

50.0%

45.0%

65.0%

60.0%

55.0%

Format those axes

Here's a line Graph with a difference: we're using some
formatters to plot percentages by date. The samples are every
20 days, but the graph makes an effort to plot "useful" values on
the axis - depending on the scale of the data, anything from
every day to the first of every year (in this case, it's chosen the
first of each month).

The Formatter concept gives a great deal of flexibility to the
graphs. Here we're plotting the first day of each month, even
though there are 30 days in some months and 31 in others -
points on the axis don't have to be evenly spaced.

Formatters can be used on any Axes Graph. Pre-defined
formatters are available for formatting integers, floating-point,
dates, percentages, currency values and discrete values, like
those used on a Bar Graph. If this doesn't cover it, the Formatter
class can be extended to plot just about anything.

new LineGraph()
optionTitle("Fruit Consumption")
optionSubTitle("Net Increase in Consumption")
optionZWallStyle(new Style(#E6E6F0, #000000))
optionYWallStyle(new Style(#E6E6F0, #000000))
optionFloorStyle(new Style(#E6E6F0, #000000))
optionYStretchToZero(true)
optionYRotation(30.0)
optionXAxisTextRotation(45.0)
optionXRotation(20.0)
optionFunctionSmoothness(50.0)
optionYFormatter(new PercentageFormatter(1))
optionXFormatter(new DateFormatter())

DEMO

	Introduction
	DUMMY
	A Plain Fruit Pie
	A 3D look, for a more substantial Pie.
	3D Pie Graph with Outer Keys
	Pie Graph with an 'Other' Twist
	A Stretched, Bright Pie
	Separating the Percentage from the Key
	A Simple Bar Graph
	Horizontal Bars
	A Deeper Bar Graph
	A Taller Bar Graph
	A Rounder, Taller Bar Graph
	Sub-Zero Bar Graphs
	Multiple Sub-Zero Bars
	Floating Bars
	A Plain Area Graph
	An Area Graph with depth
	Moving to a different Key
	The Basic Line Graph
	Smoother Curves
	No Curves at all
	Smoother, Deeper Curves
	Simpler Curves
	Difficult Curves
	Format those axes

